Go to https://www.desmos.com/calculator/f2oryrw4mk and answer the following questions using complete sentences.

1) Click on the open circle for the first function. An orange graph will appear.

$$
y=\cos n \pi x
$$

Imagine the $x$-axis represents time (hours) and the $y$-axis represents height (feet). The graph then could represent the height of a tide as it changes from high tide to low tide and back to high tide, and so on.
a) When $n=1$, how many hours does it take for the tide to go from one high tide to the next high tide?
b) When $n=1$, how many hours does it take for the tide to go from high tide to the next low tide?
c) When $n=2$, how many hours does it take for the tide to go from one high tide to the next high tide?
d) When $n=1$, how many hours does it take for the tide to go from high tide to the next low tide?
e) As the $n$ - value increases, does the length of time between high tide to high tide grow or shrink?
2) Shut off the orange function. Turn on the next function. A blue graph will appear.

$$
y=\cos \left(\frac{\pi x}{n}\right)
$$

a) When $n=2$, how many hours does it take for the tide to go from one high tide to the next high tide?
b) When $n=2$, how many hours does it take for the tide to go from high tide to the next low tide?
c) When $n=4$, how many hours does it take for the tide to go from one high tide to the next high tide?
d) When $n=4$, how many hours does it take for the tide to go from high tide to the next low tide?
e) Make a prediction based on your observations. If you wanted a graph that took 13 hours to go from high tide to low tide, what must the $n$-value be?

